Erlang
Tuesday, 4 April 2023
Wednesday, 4 January 2023
Barisan dan Deret Aritmetika
Baris dan Deret Aritmatika
Sebetulnya barisan dan deret terbagi menjadi beberapa macam. Tapi, kali ini Saya hanya akan membahas mengenai baris dan deret aritmatika.
Di atas tadi sempat Saya singgung sedikit mengenai apa itu barisan. Barisan adalah daftar bilangan yang dituliskan secara berurutan dari kiri ke kanan, di mana ia mempunyai pola atau karakteristik bilangan tertentu. Barisan biasanya disimbolkan dengan Un;
Sedangkan deret adalah penjumlahan dari suku-suku yang ada di dalam suatu barisan tertentu. Deret ini biasanya disimbolkan dengan Sn;
Kemudian aritmetika adalah ilmu berhitung dasar yang mencakup penjumlahan, pengurangan, perkalian, dan pembagian, yang ada di dalam cabang ilmu pengetahuan matematika. Psstt, inget lho, ejaan yang benar itu ‘aritmetika’, bukan ‘aritmatika’.
Rumus Baris dan Deret Aritmetika
Bentuk umum barisan aritmatika
dengan bilangan asli €== bilangan asli
Rumus Suku ke-n
atau
Keterangan:
Penerapan Barisan dan Deret Aritmetika dalam Kehidupan Sehari-hari
Wednesday, 20 July 2022
transformasi
Erlang Aditria Purwoko X IPS 1
Determinan dan Invers matriks
Erlang Aditria Purwoko XI IPS 2
Determinan dan Invers suatu matrikssangat berguna dalam penerapan matriks. Salah satunya untuk menyelesaikan sistem persamaan linear yang bisa kita selesaikan baik menggunakan metode determinan atau metode invers. Metode matriks ini kita pilih karena secara komputasi akan mudah diterapkan, hal ini terjadi karena perhitungan determinan dan invers berlaku secara sistematis dan pasti.
Suatu Matriks mempunyai determinan jika dan hanya jika matriks tersebut adalah matriks persegi. Untuk lebih jelasnya mengenai matriks persegi, sobat bisa baca materi "jenis - jenis matriks" . Determinan matriks A bisa ditulis det(A) atau |A|.
det(A) = |A| =
Misalkan matriks
determinan matriks A adalah :
Catatan : Metode Sarrus hanya bisa digunakan untuk matriks
Contoh :
Tentukan nilai determinan dari matriks-matriks berikut :
Penyelesaian :
*). determinan matriks A ,
*). determinan matriks B ,
Metode kofaktor merupakan metode umum yang dapat digunakan untuk menentukan determinan dan invers suatu matriks. Sebelum menentukan kofaktornya, kita harus menentukan sub matriksnya atau minornya terlebih dahulu.
Adapun Minor matriks A pada baris satu :
Catatan : menentukan determinan dengan metode kofaktor dapat menggukanan sembarang ekspansi, misalkan ekspansi baris ke-1, atau baris ke-2, atau baris ke-3, atau bisa juga menggunakan ekspansi kolom ke-1, atau kolom ke-2 atau kolom ke-3.
Contoh : Tentukan determinan matriks
Penyelesaian : metode kofaktor berdasarkan ekspansi baris ke-1
*). Menentukan minor baris ke-1
*). Menentukan kofaktor ekspansi baris ke-1
*). Menentukan determinan ekspansi baris ke-1
Jadi determinan matriks B adalah 19.
det(A) = |A| =
invers matriks A adalah Contoh :
Penyelesaian :
*). Determinan matriks A :
*). Invers matriks A :
Jadi, invers matriks A adalah
Misalkan matriks kofaktornya :
dengan
maka adjoin matriks A adalah
Menentukan invers semacam ini disebut menggunakan metode kofaktor.
*). Jika
*). Jika
Contoh :
Tentukan invers dari matriks
Penyelesaian :
*). Menentukan determinan matriks A
*). Menentukan Minor matriks A
Setelah kita memahami tentang determinan dan invers suatu matriks persegi, selanjutnya kita harus menguasai materi yang tidak kalah pentingnya lagi yaitu tentang sifat-sifat determinan dan invers. Silahkan baca materinya dengan klik "Sifat- sifat Determinan dan Invers Matriks".